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Within the framework of the law of locality, where a force acting on a surface element of a body is a known function of the 
orientation of the element with respect to the direction of motion, without constraints on the form of this function and the thickness 
of the body, the problem of constructing the three-dimensional shape of a body of minimum drag is solved. It is shown that, for 
a specified base area of the body and its maximum permissible length, the problem has an infinite set of solutions. Here, all the 
optimum bodies are conical, and their drag is identical. The surface of these bodies is formed by combinations of surface areas 
of a circular cone and planes tangential to it. The angle at the tip of the circular cone is determined by the characteristics of the 
medium and by the velocity of motion in the constants occurring in the drag law. © 2000 Elsevier Science Ltd. All rights reserved. 

Assuming that the force of action of a medium on a surface element of a body depends solely on its 
Orientation with respect to the direction of motion, the problem of determining the three-dimensional 
shape of a body of minimum drag has been the subject of numerous investigations [1-8]. Even within 
the scope of specific drag laws, the solution of this problem by indirect methods of variational calculation 
has been found only with simplifying assumptions regarding the geometry of the body, where, by 
narrowing the category of permissible surface,s it has proved possible to reduce Euler's equation to 
ordinary differential equations. 

Thin three-dimensional bodies of minimum drag with similar (homothetic) cross-sections have been 
investigated [1, 2, 4-8]. Here, either the longitudinal contour of the body was assumed to be specified 
[2, 5] or a distribution of the pressure and friction coefficients was selected by which the problems of 
determining the optimum longitudinal and transversal contours were separated [1, 4, 7, 8]. Thus, on 
the assumption that the pressure distribution is specified by Newton's formula, with zero friction the 
optimum bodies, having the specified length and base area, were found [1, 4], it being assumed that, 
in the base plane of the body, the minimum radius of its cross-section was also specified. According to 
these results, the longitudinal contour of a three-dimensional body of minimum wave drag is determined 
by a power law function with an exponent of 3/4, while the transversal contour has a star shape and 
consists of a previously specified number of symmetrical cycles. In a similar formulation, without any 
constraint on the body thickness, the optimum transversal contour was constructed [3] for the specified 
(conical) longitudinal contour. 

An increase in the number of cycles of optimum starbodies monotonically reduced their drag 
[1, 3, 4]. With a low wave drag, these bodies had a much greater surface area than did bodies of revolution 
of equivalent length and base area, which, taking friction into account, could lead to a considerable 
increase in their total drag. 

The problem of constructing the optimum transversal contour of a body was examined [2] taking 
friction into account (see also [5]), the pressure on the body surface being specified by Newton's formula, 
while the coefficient of friction was assumed to be constant. For a specified length and base area it was 
assumed that the body is slender and has a specified (power-law) longitudinal contour. The most 
important results [2, 5] in this formulation of the problem include the conclusion that its solution is 
possibly non-unique for values of the coefficient of friction below the 'critical', a category of various 
bodies was constructed with identical drag. The transversal contour of these bodies can comprise 
combinations of arcs of a circle and segments of straight lines tangential to it. In particular, it could be 
star-shaped and consist of an arbitrarily specified number of symmetrical cycles. Here, the radius of 
the circle to which the lines were tangential was determined by the selected shape of the longitudinal 
contour and by the coefficient of friction. It was shown [6] that the drag of such bodies with a known 
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friction parameter is absolutely minimum. This solution became unique when the value of the coefficient 
of friction was greater than the critical value or when additional constraints were imposed on the 
geometry of the body, for example, the minimum radius of the base generator or the number of cycles 
in it was specified. 

In a formulation of the problem, which was similar to that proposed earlier [1, 4] but taking friction 
into account, the optimum longitudinal and transversal contours were investigated [7] and here, as earlier 
[2, 5], the coefficient of friction was assumed to be constant. For thin homothetic bodies, variational 
problems of determining the optimum longitudinal and transversal contours were separated [7]. Here, 
the equation defining the optimum longitudinal contour contained a constant that was expressed in 
terms of an integral which depended on the transversal contour, and, conversely, the equation for the 
optimum transversal contour contained a constant that depended on the longitudinal contour. These 
previously unknown "constraint constants" could be found only by a combined solution of the problems. 
An analysis carried out with arbitrary values of these showed that, in the general case (including when 
only the base area and length of the body are specified), the optimum longitudinal contour in the vicinity 
of the tip is determined by a power law function with an exponent of 3/4, while the transverse contour, 
as earlier [1, 4], is star-shaped. The combined problem of determining the optimum longitudinal and 
transversal contours of a body has not been solved, but is has been noted [7] that situations are possible 
in which the longitudinal contour becomes conical, while the transverse contour consists of straight line 
segments. 

In a formulation similar to that proposed earlier [7], in particular, assuming the bodies required to 
be thin and homothetic bodies, using a well known procedure [5, 7] a more complete analysis of the 
optimum three-dimensional configurations was carried out [8]. An important result [8] was the 
determination of the category of bodies that have a conical longitudinal contour and a transverse contour 
consisting of a combination of arcs of a circle and line segments tangential to it, in which all bodies 
have the same drag. Bodies of this category have been termed absolutely optimum, since, for a specified 
base area, their drag does not depend on the body length or on the number of cycles of the transversal 
contour and is determined only by the velocity and the parameters of the medium. 

The problem of the three-dimensional shape of a body of minimum drag is solved below without any 
constraint on the body thickness and without assuming similarity of its cross-sections [1-8], and also 
without constraints on the type of function prescribing the model of local interaction of the medium 
with the body surface. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Let us examine the motion of a body in a medium with a constant velocity in a direction opposite to 
the direction of a certain axis prescribed by unit vector x. 

The drag of the body is written in the form 

D = qS S [cp (nx) + cx (xx)]dS (1.1) 
5" 

where q is the velocity head, Cp and c, are the pressure and friction coefficients on the body surface, n 
and ,r are the unit vectors of the inward normal and the tangent to the surface element, and integration 
is carried over the surface S of contact between the medium and body, for which 

ot = ( n x )  >t O, ( x x )  = ~/I - a 2  (1 .2 )  

Let each surface element of the body react with the medium independently of the others, and let 
the coefficients, cp and c~, within the framework of the model of local interaction, be functions of e~: 

% = cp(a), c~ = c~(a) (1.3) 

In the general case, the parameters of the medium and the velocity of the body, which are assumed 
to be constant, may occur in expressions (1.3). In particular, relations (1.3) include models of force 
interaction that were used earlier in the formation of the problems in [1--8], with 

Cp = AtO~ 2 + Bt(x + CI, cx = A2(X 2 + B20¢ + C 2 (1.4) 

HereAi, B i and Ci (i = 1, 2) are constant parameters of the local model, which depend on the parameters 
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of the medium and the velocity. It has been shown [8] that, with certain assumptions, expressions (1.4) 
can describe the pressure and friction coefficients on the body surface during its motion in gases and 
dense media such as the ground and metals 

In a cylindrical system of coordinates (p, x, 0) with reference scale x at the tip of the body, let the 
surface of the latter be specified by the equation 

p = V(x, 0) 

where +(0, 0) = 0. It is assumed that the function t~(x, 0) is continuous over the entire region of the 
analysis: x e [0, xk], 0 ~ [0, 2"rr], where xk is the body length, and its partial derivatives +x and % can 
undergo a discontinuity on a finite number of break lines. With x = x~, the cross-section area Sb (base 
area) is considered to be specified, and consequently 

2n 
J V2(xk, O)dO = 2St, (1.5) 
0 

For the parameter a and the differential of the area dS it is possible to write the expressions 

211/2 
a = ~ x l [ l + ( ~ / o l ~ ) 2  +~x]  , dS=[~qr~xlOt]dxdO (1.6) 

The surface of integration in (1.1) should be "wettable", and on it 

W.,. ~> 0, l~>et~>0 (1.7) 

Taking relations (1.2), (1.3) and (1.6) into account, expression (1.1) can be written in the form 

2~ xk 

O = q Id01 f(a)V~CxaX (1.8) 
0 0 

The functionf(a) in (1.8), which depends on the resistance law (1.3), in general is written as 

f ( ~ )  = ct,(Ot ) + (c~(tX)/ Ot)(I - ~2)1/2 (1.9) 

As a result, the problem of constructing a three-dimensional body of minimum drag can be formulated 
in the following form: among the functions ~(x, O) and a(x, O) which satisfy the conditions of smoothness 
defined above, and also conditions (1.5) and (1.7) and the connection equation (1.6), it is required to 
find those which provide the minimum of drag functional (1.8). 

2. E X T R E M A L  SURFACES 

The problem of minimizing functional (1.8) can be solved using the general methods of the calculus 
of variations. For this it is necessary tO write the Lagrangian and to obtain Euler's equations for the 
functions occurring in it. The analytical solution of the corresponding system of non-linear second order 
partial differential equations, taking condition (1.5) into account, presents great difficulties, and 
additional constraints must therefore be imposed on the category of permissible surfaces. This was done 
earlier in [1-8], when a solution was sought in the category of thin bodies with similar cross-sections 
along the axis of the body. This problem, however, allows of a different approach which does not require 
any additional constraints on the surfaces required, apart from conditions (1.5) and (1.7) introduced 
in its formulation. 

For a positive argument a, where ot E [0, 1], let us consider the function /(o 0 from (1.9). Suppose 
that, for a = cx* e [0, 1], it reaches a minimum. Then, taking into account the form of the integrand 
of functional D (1.8), we obtain that, for any surface ~b(x, 0) and the function eL(x, 0) satisfying conditions 
(1.5) and (1.7) 

2~ xk 

D >i D* = qf(o~*) SdO S~ll~xdx = qShf(o~* ) (2.1) 
0 0 

This inequality gives a lower limit of the values of functional (1.8). The equality is possible only when 
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ct(x, 0) - or*, where the functional D reaches its absolute minimum D*. Thus, the extremal surfaces in 
the problem of the shape of a body of minimum drag with a specified base areas Sb are surfaces with 
(rot) -= or* -- const. As follows from (1.9), the value of or* for which the function f (a )  is a minimum 
does not depend on Sb and is determined solely the parameters of the medium and the velocity. 

In accordance with the expression of ct (1.6), the function t0(x, 0), giving the shape of extremal surfaces, 
satisfies the equation 

~I/x/[1 + (¥e /¥ )2 ]1 /2  = t*, t* = ~*/(I --0t*2) I/2 (2.2) 

When ct* < 1, its solutions when tox = t* and too = 0 defined the surfaces of circular cones, in particular 
a cone with to(x, 0) = t* x with the origin of coordinates at its vertex. It is obvious that all planes tangential 
to it also satisfy Eq. (2.2). The value ct* = 1 corresponds to the case where the cone degenerates 
into a plane normal to the x axis. The solution of  the problem is then given by any area Sb normal to 
this axis. 

We shall refer to bodies formed by surfaces on which (nx) = or* at each point, and with function 
to(x, 0) satisfying condition (1.5), as "absolutely optimum bodies". All absolutely optimum bodies have 
an identical drag D* below which, for a specified base area, Sb it is impossible to go. When et* < 1, this 
category of bodies includes a circular cone of  lengthxk = (Sb/'tr)l/2/t* wi th  ~(x, O) = t*x and bodies whose 
surface is formed by planes tangential to it. 

The case when et* = 0 in an examination of absolutely optimum bodies is only of theoretical interest, 
since the length of the corresponding circular cone with a specified based area Sb is infinite. For a finite 
length, the specified base area Sb of such bodies can be ensured by two methods: by constructing their 
base from a finite number of  rays of infinite length (in the radial direction) or from an infinite number 
of rays of finite length. Such bodies, being shapes of minimum drag, are not, however, of practical interest. 
The value et* = 0, in particular, is obtained using Newton's resistance law with zero friction. It is for 
this reason that other researchers [1, 3, 4], in constructing three-dimensional bodies of minimum wave 
drag within the scope of Newton's resistance law, along with the length and base area, had to prescribe 
the minimum radius of  the base contour and the number of  cycles in it. The setting of these additional 
constraints enabled shapes of practical interest to be obtained. 

3. P R O P E R T I E S  O F  A B S O L U T E L Y  O P T I M U M  B O D I E S  

For the absolutely optimum bodies obtained above, the function to(x, 0) can be written in the form 

V(x, 0) = 9(x)R(0) (3.1) 

with continuous functions to(x) and R(0), defining, respectively, the longitudinal and transversal contours. 
We emphasize that here formula (3.1) is the result of  solving the problem an question and not the 
assumption that configurations required are homothetic, as earlier [1-8]. 

By virtue of the conicity of the longitudinal contour of absolutely optimum bodies 

9'(x) = tt = const > 0 (3.2) 

In addition, to(x) and R(0), according to (1.5), satisfy the conditions 

9(0) = O, 9 ( x , )  = ($1,/n) It2 (3.3) 

27¢ 

R(0) = R(2x), ~ R 2 (0)d0 = 2n (3.4) 
0 

Suppose for a known resistance law and consequently, a known functionf(ot), the value obtained is 
a* < 1. Then, as shown above, the body constructed is an absolutely optimum body if ~(x, 0) satisfies 
Eq. (2.2). Taking relations (3.1) and (3.2) into account, Eq. (2.2), after introducing the notation 

r(O) = R 2 I(R 2 + R'2) I/2 (3.5) 

can be written in the form tkr(0) = t*, Hence, the following expression is obtained for the function r(0) 

r(0) = r k = t* / t k = const (3.6) 
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in which the constant rk depends on the shape of the longitudinal contour. As follows from relations 
(3.4) and (3.5), rk <~ 1. 

Thus, an absolutely optimum body has a conical longitudinal contour ~(x) = tkx and a transversal 
contour with the function r(0) = rk ~< 1 with constants tk and rk related by the equality 

rkt k = t* (3.7) 

The functions ~o(x) and R(0) satisfy conditions (3.3) and (3.4). The given category of bodies includes 
an infinite set of shapes with different longitudinal and transverse contours. Their length xk, as follows 
from (3.3), with a prescribed base area Sb, is defined by the expression 

xl.=(Shln)l/21tk =rl.x*k, x*k =(Sb/n)ll2 /t* (3.8) 

where x~ is the length of the circular cone of the class of absolutely optimum bodies, which depends 
only on St, and t*. 

Since r, ~< 1, it follows that in all cases Xk ~ x'~, and among absolutely optimum bodies a circular 
cone has the greatest length. By changing rk it is possible to produce bodies of different length with 
longitudinal contour ~(x, 0) = t~c, and the value tk >! t* is determined by rk from expression (3.7). 

It tk and, consequently, the shape of the longitudinal contour of the absolutely optimum bodies are 
uniquely found from rk, then the shape of its transversal contour, even for known rk, is determined non- 
uniquely. In fact, the function of the transversal contour R(0), by relations (3.5) and (3.6), must satisfy 
the equation 

R 2 I (R  2 + R'~-) l/~- = rt. 

Its solutions are arcs of two types: (1) the arc of a circle with R(0) --- rk (a "zero" arc) and (2) the 
segment of a line tangential to a circle of radius r,  with R(0) = rk/cos(0 - 01) (a "positive" arc), where 
01 is an integration constant. The function R(0), continuous in the segment [0, 2~r], should in this case 
satisfy conditions (3.4). The presence in the transversal contour of each of the different types of arc 
depends not only rk but also on the prescribed number of points of discontinuity of its derivative R'(0). 
As shown below, when rk < 1, such points necessarily exist. 

The transversal contour can be made up of N identical cycles, when N is an integer. Each cycle consists 
of two smooth symmetrical arcs allowing a discontinuity of R'(O) at the joining point. Then, for known 
rk ~ 1 and any N ~> 2, the transversal contour is determined entirely by the function R(O) in a half- 
cycle in the segment [0, ~r/N] and can consist of two arcs smoothly joining at the point 0 = 00: (1) a 
zero arc with O ~ [0, 00] and (2) a positive arc with 0 E [0~ ~r/N]. The values of O0 and 01are found from 
the relations 

Ro - cos(00 _ 01 ), tg(00 - 0t )-~ ~ _ NO°R 2 = ctg (3.9) 

where R0 is the minimum value of R(0), and here, without loss of generality, R 0 = R(0). If 

r k <~ R n, R,, = [ ( n l N ) l t g ( x l N ) ]  112 (3.10) 

then there is no zero arc for the transversal contour (00 = 0). If condition (3.10) is not satisfied and 
rk < 1, the contour contains both positive and zero arcs. In this case 01 = 00, and R0 = rk. 

As an example, Fig. 1 shows transversal contours 1-3 for N = 4 and r k = 1.095 and 0.5. The functions 
R(0) of these contours satisfy conditions (3.4). The dashed lines give circles 4 and 5 of radii rk = 0.95 
and 0.5. Segments of lines tangential to them form positive arcs of contours 2 and 3. Since, when 
N = 4, the value Rn = 0.89, then, for contour 3 with rk = 0.5, by condition (3.10), there is no zero arc, 
whereas contour 2 with rk = 0.95 contains both positive and zero arcs. Transverse contours 1-3, mapped 
in Fig. 1, belong to absolutely optimum bodies if their longitudinal contours qffx) = tkx have tk = t*/r~. 
This, in particular [see relation (3.8)], leads to an absolutely optimum body with transverse contour 3 
(rk = 0.5) having half the length of a circular cone of this category with contour 1. 

As follows from relations (3.9), for fixed rk, by varying the values of N, it is possible to produce 
transversal contours with different minimum radii R 0. An increase in the number of cycles N leads to 
an increase in R0, which enables the transverse dimensions of the body to be varied. This possibility is 
demonstrated by Fig. 2. The continuous lines represent transversal contours 2 and 3 constructed with 
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rk = 0.7 and N = 4 and 16. These contours bound the same area as circle 1, which corresponds to the 
transversal contour of the circular cone with rk = 1. Circle 4 in Fig. 2 has a radius rk = 0.7, and there 
are lines tangential to it whose segments form contours 2 and 3. By fixing rk and increasing N, it is possible 
to make the radius Ro differ as little as desired from unity. Here, since all these contours have the same 
value of rk, the absolutely optimum bodies corresponding to it have the same longitudinal contour with 
q~(x) = tax with t k from (3.7). 

Thus, for a known value of t* which depends only on the parameters of the medium and the velocity, 
it is possible to construct an infinite set of absolutely optimum bodies having a conical longitudinal 
contour with function ~(x) = tax and a transverse contour which, in general, consists of arcs of a circle 
and segments of lines with the function r(0) = rk, and here tk and rk are related by condition (3.7). For 
specified base area Sb, all these bodies have the same drag D* (2.1) and gives a solution to the problem 
of the shape of a body of minimum drag. 

The given category of bodies with prescribed Sb includes bodies of different length and different cross- 
sectional dimensions, which can change continuously without chaining the drag of the body. This property 
of absolutely optimum bodies can be used in cases where, besides the specification of Sb, additional 
constraints are imposed on the body required. If, with such constraints, it is possible to select the 
absolutely optimum body which satisfies them, then, giving the drag functional (1.8) an absolute minimum 
(2.1), it will be a body of minimum drag in the problem with given constraints. 

4. O P T I M U M  SHAPES WHEN A D D I T I O N A L  C ONST R AINT S ON THE 
GEOMETRY OF THE BODY ARE S P E C I F I E D  

Suppose the base area Sb is specified and, from the known parameters of the medium and the velocity, 
the value ct = ct* is obtained for which the function/fra) (1.9) in the segment [0, 1] reaches a minimum. 
Let ct* ~ (0, 1) and from it, from (2.2), the value t* is determined. 

Lernma 1. If, as an additional condition, the maximum permissible (limiting) length of the body L is 
specified, then an absolutely optimum body always exists which yields a solution of the problem of the 
shape of a body of minimum drag and which gives the drag functional an absolute minimum. 

Proof. From the specified Sb and L we find t = (Sb/'tr)l/2/L. We introduce the notation t m = max(t, 
t*). Any absolutely optimum body with ~(x) = tax, where tk >I tin, and with rk = t*/tk will be the solution 
of the problem, since, according to (3.8), its length Xk <~ L.  Here, if tk > t*, then the body has a star- 
shaped cross-section consisting of an arbitrary number N of symmetrical cycles, and here, if condition 
(3.10) is satisfied, there is no zero arc at the transversal contour. 

Lemrna 2. If, as additional constraints on the geometry of the body, the length L and the characteristic 
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cross-sectional dimension of the base of the body are specified, then an absolutely optimum body always 
exists which solves the problem of the shape of a body of minimum drag and which gives the drag 
functional an absolute minimum. 

Proof. We will take as the specified cross-sectional dimension of the body, the radius of the cross- 
section of its base R0 < 1. By relations (3.9) and (3.10), there is always an integer N* such that, for all 
N/> N*, the condition R~ > R0 will be satisfied, which means that, for all N, there is no zero arc at the 
optimum contour. Then, for these N, the value of rk will be found from the expression 

,~ = R o/[I + tg2(0,)] '/2, tg(0, )=(P~ - R,~)/(n/N) (4.1) 

Since, as N--~ o% the value rk --4 0, then N, rk and tk = t*/rk will always be found such that the conditions 
1 / 2  ~ " " tk > (Sb/rr) /L andxk ~ L are satisfied. Consequently, there will always be an absolutely optimum body 

that is admissible in the problem and that will be its solution. 
The following is proved by a similar method. 

Lemma 3. If, as additional constraints on the geometry of the body, the number of cycles of the 
transversal contour of the body and also its limiting length or the characteristic cross-sectional dimension 
of the base are specified, then there is always an absolutely optimum body that yields the solution of 
the problem of the shape of a body of minimum drag and gives the drag functional an absolute minimum. 

Lemmas 1-3 were proved taking into account the condition or* < 1, where t* < o% and the case of 
non-degenerate extremal surface is realized. However, they also remain valid when tx* = 1. In this case, 
the solution is given by any area with specified Sb with the normal directed along the flow velocity vector. 

The consequence of Lemmas 1-3 is as follows. 

Theorem. If, for a specified base area Sb, there is at least one arbitrariness in specifying the limiting 
length of the body L, the characteristic cross-sectional dimension of the base R b o r  the number of cycles 
N of the transversal contour, and there are no other constraints on the geometry of the body, then there 
is always an absolutely optimum body that yields a solution of the problem of the shape of a body of 
minimum drag and gives the drag functional (1.8) an absolute minimum (2.1). 

When arbitrary values of Sb, L,  Rb and N are simultaneously specified, there may not be an absolutely 
optimum body that satisfies all the specified conditions. A similar situation arises when, for specified 
Sb and N, values L < x~ are adopted, where x~ is the length of the cone from the body category (3.8), 
and the minimum values of the radius of the base Rb > Ro, where R0, for specified N, is found from 
relation (3.9) with rk = t*/t, where t = (Sb/~r)l/2/L. In such cases, the optimum configurations have a 
more complex shape and their construction requires the simplifications and approaches used earlier 
[7, 8]. In particular, as shown in [8] for thin bodies with resistance law (1.4), the optimum longitudinal 
contour is then not rectilinear and, at the tip of the body, is approximated by a power law function with 
an exponent of 3/4. 

When using the results of earlier investigations [7, 8], where all of the above constraints on the 
geometry of the body were included in the final formulation of the problem, it is important to avoid 
the errors and inaccuracies they contain. 

Without making a detailed examination of the solution given in [7], we shall merely note that, in writing 
Euler's equation in this paper for the function of the longitudinal contour, an error occurred, and, in 
searching for the optimum transversal contour, the incorrect conclusion was reached that, for specified 
arbitrary values of Sb, L and R0 and a variation in the parameter N, no solution of the problem exists. 
However, as follows from the proof of Lemma 2, an infinite set of absolutely optimum body shapes 
exist that in this case are the solution of the problem, with lengthsxk ~< L, which, where necessary, can 
always be brought up to the prescribed length L by a needle of zero thickness in front of the body. 

In solving the problem of a three-dimensional shape of minimum drag in the same formulation as 
in [7] but using, for the forces acting on a surface element of the body, relations (1.4) [8], again a number 
of inaccurate conclusions were reached in relation to the optimum three-dimensional shape. In particular, 
it must be pointed out that, for specified Sb, L, Ro and N, the optimum transversal contour cannot contain 
a non-zero convex arc if there are no additional constraints on the longitudinal contour. A regular convex 
arc in the solution given in [8] appears for values of R0 < t*/t, where t = (Sb/'tr)l/2/L. However, in this 
case there is always an absolutely optimum body with a transversal contour of N symmetrical cycles 
and with a value of rk = Ro if R0 >t Rn, and rk, < Ro if R0 < Rn, and then rk is found from Ro and R~ 
from expression (4.1), Since for this body tk = t*/rk > t, its length (3.8)Xk <~ L, which, where necessary, 
can be brought to the prescribed length L by a needle of zero thickness. A convex arc at the optimum 
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transversal contour in the formulation of the problem [8] is possible only with an additional constraint 
on the longitudinal contour, when, for example, it is assumed to be specified. 

Above, it was assumed that the transversal contour of the body consists of N identical symmetrical 
cycles. In fact, the class of absolutely optimum bodies is much wider. It obviously includes any 
configuration with a conical longitudinal contour with the function ~(x) = tkx, where tk I> t*, and a 
transversal contour R(0), which, satisfying conditions (3.4), is made up of any combinations of arcs of 
a circle of radius rk = t*/tk and segments of lines tangential to it. It can be shown that the transversal 
contours of asymmetrical absolutely optimum bodies, like symmetrical ones, cannot contain arcs of a 
circle. 

5. A S P E C I A L  CASE OF A F O R C E  E F F E C T  OF T H E  M E D I U M  ON A 
S U R F A C E  E L E M E N T  O F  T H E  B O D Y  

Let us consider the specified case of the solutionf(ot), when the force effect of the medium on a surface 
element of  the body can be described by relations (1.4) with B1 = B2 = 0. The given model of  force 
interaction covers not only hypersonic motion of the body in a gas with a constant coefficient of friction 
(A1 ~ 0, C2 ~ 0 and C1 = A2 = 0)  but also high-speed motion of the body in dense media such as the 
ground or metals, when, withA2 = Fq~ll and (?2 = pLoC1, a model of motion with Coulomb friction holds 
( ~  is the coefficient of  dry friction) and, with A 1 ~ 0, C1 ~ 0, C2 ~ and A 2 = 0, the model of motion 
with constant friction holds. 

In the case in question 

f ( ~ )  = AlOt 2 + (A20t + C 2 / t~)]( + Ci, It = (1 - t~ 2)~ (5.1) 

A local extremum of this function is reached with a value of a defined as the root of the equation 

f'(oO=a2(2txy+A(I-2tx2))-C=O, A=A21AI, C=C21A I (5.2) 

The global minimum of  the function f(ot) in the segment [0, 1] is sought among its local minimum 
and boundary minima (possible with et = 0 and et = 1). 

For the model with constant friction (,4 = 0, C ¢ 0), the solution of Eq. (5.2) is determined by the 
value of  the single parameter Y -- C 1/3 and, in the case of a thin body ( 2  ,~ 1) has the form 

o~* = 2 -~  V (5.3) 

In the thin body approximation, solu>tion/t5.3 ) with Y <~ 21/3 defines the global minimum of the function 
f(ot) in a segment [0, 1], which for Y ~ 2 , is reached at the point ot = 1, where the assumption that 
the body is thin no longer holds. The dependence of a* on Y (5.3) is shown in Fig. 3 (curve 1). For 
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Y < 0.5 it is similar to the exact solutions of the problem of minimum of the functionf(a), found without 
any constraint on the body thickness. In Fig. 3, the exact solutions are represented by curve 2 (for the 
model of constant friction with A = 0) and by curve 3 (for the model of Coulomb friction with 
A = ~ = 0.2). Points a and b for curves 2 and 3 mark the values of Y* for which the local and boundary 
minima (with ot = 1) of the functionf(a) and identical. When Y > Y*, the minimum is reached at the 
point a = 1. 

For different Y, the drag of absolutely optimum bodies, D*, was compared with the drag of circular 
cones, Dk, with the same base area. Figure 4 gives, as a function of a, values of ~a9 k = ( D i l l ) *  - 1) × 100 
indicating that the drag of a cone, Dk, with an aperture half-angle 13 = arcsin a exceeds the value of 
D*. Curves 1-3 were plotted for Y = 0.1, 0.5 and 0.8, respectively. The continuous curves in Fig. 4 
correspond to the model of constant friction with C f l A 1  = 5I p, and the dashed curves correspond to 
the model of Coulomb friction with ~0 = 0.2. As an example, Fig. 4 gives curve 4 for C1 = 0, plotted 
for the model of constant friction with Y = 0.8. 

Since D~ = qf(a)Sb, and the drag of absolutely optimum bodies, D*, is defined by expression (2.1), 
it follows that curves 1-4 in Fig. 4, besides ~a9 k with the same Y, demonstrate the behaviour of the function 
( f (o t ) / f (oL*)  - 1) as a'function of or. In particular, curves 3 and 4 show the behaviour of this function in 
the segment [0,1] with Y = 0.8, when a* = 1, and for both friction models the minimum of the function 
f(a)  changed from local to boundary. Thus, for the chosen drag law, whatever the value of Y, there is 
always a region of a values in which absolutely optimum bodies have a significantly lower drag compared 
with cones of the same length and the same base area with 13 = arcsin o~. 

6. C O N C L U S I O N  

Within the framework of the law of locality, without constraints on the body thickness or the type of 
function specifying the interaction model, bodies have been constructed that are called "absolutely 
optimum bodies". These bodies, with different configurations, have an identical drag below which, for 
specified base area, it is impossible to go. They are conical. Their surface is formed by sections of a 
circular cone, which may be absent, and sections of planes tangential to it. The angle at the tip of the 
circular cone is determined by the characteristics of the medium and the velocity in terms of constants 
which occur in the drag law. Absolutely optimum bodies can be 'star-shaped' with transversal contours 
made up of an integer number of symmetrical cycles. A theorem has been proved with an enumeration 
of the constraints on the geometry of the body for which absolutely optimum bodies are solutions of 
the problem of the shape of a body of minimum drag. In particular, absolutely optimum bodies will 
always be the solution of such problem for a specified length and base area of the sought body required. 
For a particular form of the drag law, including Newton's law of resistance with constant friction, made 
the drags of absolutely optimum bodies and of circular cones of equivalent length and base area have 
been compared. It has been shown that, for a known friction parameter, there will always be relative 
thicknesses of the body for which the drag of the absolutely optimum body is considerably lower. 

The results obtained agree with the main conclusions of [9, 10] that a considerable reduction in 
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aerodynamic drag in the class of bodies of equivalent length and base area can be achieved by changing 
from axisymmetrical bodies to star-shaped ones. In fact, for a gas, the local coefficient of friction at 
hypersonic speeds is of the order of 10-2-10 -3. Assuming it to be constant (Y ~ 0.1), from relation 
(5.3) we find a* ~ 0.1. In this case, the aperture half-angle of a circular cone in the also of absolutely 
optimum bodies is 13" = 5 °, and its relative thickness is 2t* = 0.2. I f t  = (Sb/~r)l/2/L > t*, then, as shown 
above, for specified Sb and L, the solution of the problem of the body'with minimum drag will be an 
absolutely optimum body with a star-shaped cross-section. Earlier [9, 10], theoretical and experimental 
investigations were made of the aerodynamic characteristics of pyramidal bodies with plane faces with 
t = 0.2-0.4. Curve 1 in Fig. 4, plotted for constant friction with Y = 0.1. (the continuous curve) and 
or* = 0.08, gives in this case the drag of a cone with an apertuse half-angle of 13 = arcsin ot that exceeds 
D = D* of an absolutely optimum body. Consequently, as in earlier papers [9, 10], for these values of 
t, the drag of star-shaped absolutely optimum bodies is considerably lower than the drag of equivalent 
circular cones. 

In the problems examined here, the absolutely optimum bodies turned out to be conical. This must 
be borne in mind when analysing the results of recently published work [11], where the aerodynamic 
characteristics of star-shaped bodies, the longitudinal contours of which with reference to [4] were chosen 
to be exponential (~0(x) = / ~  with n = 3/4), were determined numerically and experimentally. However, 
are recall that the optimum value n = 3/4 was obtained [4] for specified Sb, L ,  N and R0. whereas the 
characteristics of starbodies with exponential and conical longitudinal contours were compared [11] 
for specified L and volume. 

In conclusion, we note that review [12] of the results of theoretical and experimental research into 
the reduction in drag of starbodies when they move in dense media such as the ground or metals showed 
that, for penetrat ion velocities of the order of 102-103 m/s, approximate models of type (1.4) can be 
used to record the stresses on the surface of three-dimensional bodies. This confirms the possibility of 
also using the results of the present paper to optimize the shape of three-dimensional bodies when they 
move through dense media. 
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